Modelling 1 SUMMER TERM 2020

Lecture 7 Representing Geometry

Michael Wand · Institut für Informatik · michael.wand@uni-mainz.de

Motivation

Modeling

Available tools

- Vectors (in linear spaces)
- Functions (high-res vectors)

Goal

- Model more complex phenomena
- Map to linear representation

Example

- Geometric objects
- Many phenomena have a geometric interpretation

Geometric Modeling

What do we want to do? empty space \mathbb{R}^{d} (typically \mathbb{R}^3) \mathcal{B} geometric object $\overline{\mathcal{B}} \subset \mathbb{R}^d$

Fundamental Problem

Problem

infinite number of points

my computer: 32GB of memory

Encode continuous model with finite information

Modeling Approaches

Two Basic Approaches

- Discrete representations
 - Fixed discrete bins

"Continuous" representations

- Mathematical description
- Evaluate continuously

Fixed Bins (Voxels, Pixels)

Discrete Representations

You know this...

• Fixed Grid of values: $[\{1, ..., n_1\} \times \cdots \times \{1, ..., n_{d_s}\}] \rightarrow \mathbb{R}^{d_t}$

Typical

- $d_s = 2$, $d_t = 3$: Bitmap images
- $d_s = 3$, $d_t = 1$: Volume data (scalar fields)
- $d_s = 2, d_t = 1$: Depth maps (range images)

Volume Data (RGB α)

Continuous Modeling Zoo

Modeling Zoo

Modeling Zoo

Parametric Models

Parametric Models

- f maps from parameter domain Ω to target space
- Evaluation of f: one point on the model

Linear Modeling?

 $f(\mathbf{x}) = \sum_{i=1}^{n} \lambda_i b_i(\mathbf{x})$

Linear representation

- f is a linear object
- Linear ansatz:

lifficult"

 \rightarrow total least squares

Non-linear (read: difficult)

- Reshaping Ω (domain)
 - Changing the topology
- Reparametrization (warping within Ω)
 - Example: associating points $x\in \Omega$ with data
 - "Correspondence problem"

Example Building Smooth Functions with B-Splines

Goal: Smooth Curves/Surfaces

Splines in Computer Graphics (& Numerics)

- Curve roughly follows control points
- Curve should be smooth (C^2) everywhere
- Curve should bend minimally
 - In a certain sense, more later

Build smooth function, linear combine from it!

Cubic Uniform B-Splines

Cubic uniform B-Splines

- Piecewise cubic functions
 - C² continuous
 - Popular choice

Ansatz

- Design one basis function b(t)
 - b(t) is C² continuous.
 - b(t) is piecewise polynomial, degree 3 (cubic).
 - b(t) has local support.
 - Overlaying shifted b(t + i) forms a partition of unity.
 - $b(t) \ge 0$ for all t

Basis Function

$$b(t) = \begin{cases} 0 & \text{if } t < 0 \\ p_1(t) & \text{if } 0 < t \le 1 \\ p_2(t-1) & \text{if } 1 < t \le 2 \\ p_3(t-2) & \text{if } 2 < t \le 3 \\ p_4(t-3) & \text{if } 3 < t \le 4 \\ 0 & \text{if } t > 4 \end{cases} = \begin{cases} 0 & \text{if } t < 0 \\ \frac{1}{6}t^3 & \text{if } 0 < t \le 1 \\ \frac{1}{6}\left(1 + 3(t-1) + 3(t-1)^2 - 3(t-1)^3\right) & \text{if } 1 < t \le 2 \\ \frac{1}{6}\left(4 - 6(t-2)^2 + 3(t-2)^3\right) & \text{if } 2 < t \le 3 \\ \frac{1}{6}\left(1 - 3(t-3) + 3(t-3)^2 - (t-3)^3\right) & \text{if } 3 < t \le 4 \\ 0 & \text{if } t > 4 \end{cases}$$

Shifted Basis Functions

Basis function:

- Consists of four polynomial parts $p_1...p_4$.
- Shifted basis b(t i): spacing of 1.
- Each interval to be used must be overlapped by 4 different b_i .

Example: Uniform B-Spline Curves

n+3 coefficients (4 for each segment)

Example: Uniform B-Spline Curves

n+3 coefficients (4 for each segment)

Spline Surfaces

Tensor product surfaces

- Simple construction
- Grid of control points
- Rectangular patches

Tensor Product Surfaces

Simple Idea:

Basis for a one dimensional function space

$$B^{(curv)} = \{b_1(t), b_2(t), \dots, b_n(t)\},\$$
$$b_i: (a, b) \to \mathbb{R}$$

Two parameter basis from all possible products:

 $B^{(surf)} = \{b_1(u)b_1(v), b_1(u)b_2(v), \dots, b_n(u)b_n(v)\}$ $b_i \cdot b_j \colon (a, b)^2 \to \mathbb{R}$

Tensor Product Surfaces

Tensor product basis

	<mark>b₁(u)</mark>	<mark>b₂(u)</mark>	<mark>b₃(u)</mark>	<mark>b₄(u)</mark>
<mark>b₁(v)</mark>	<mark>b₁(v)b₁(u)</mark>	b ₁ (v)b ₂ (u)	b ₁ (v)b ₃ (u)	b ₁ (v)b ₄ (u)
<mark>b</mark> 2(v)	<mark>b₂(v)b₁(u)</mark>	<mark>b₂(v)b₂(u)</mark>	<mark>b₂(v)b₃(u)</mark>	b ₂ (v)b ₄ (u)
<mark>b₃(v)</mark>	<mark>b₃(v)b₁(u)</mark>	<mark>b₃(v)b₂(u)</mark>	<mark>b₃(v)b₃(u)</mark>	b ₃ (v)b ₄ (u)
<mark>b₄(v)</mark>	b ₄ (v)b ₁ (u)	b ₄ (v)b ₂ (u)	b ₄ (v)b ₃ (u)	b ₄ (v)b ₄ (u)

2D Spline Basis

Tensor Product Surfaces

Tensor Product Surfaces:

$$f(u, v) = \sum_{\substack{i=1\\n}}^{n} \sum_{j=1}^{n} b_i(u) b_j(v) \cdot \mathbf{p}_{i,j}$$
$$= \sum_{\substack{i=1\\n}}^{n} b_i(u) \sum_{\substack{j=1\\n}}^{n} b_j(v) \cdot \mathbf{p}_{i,j}$$
$$= \sum_{\substack{j=1\\j=1}}^{n} b_j(v) \sum_{\substack{i=1\\n}}^{n} b_i(u) \cdot \mathbf{p}_{i,j}$$

- "Curves of Curves"
- Order does not matter

Meshes of Spline Patches

Spline mesh

- Quad-mesh
- Continuity conditions etc. (lecture of its own)
- Popular choice: "Trimmed NURBS"
 - Rational, non-uniform B-Splines; higher degrees
 - Trimming curves in parameter domain

Modeling Zoo

Primitive Meshes

Primitive Meshes

- Collection of geometric primitives
 - Triangles, Quadrilaterals
 - Spline patches etc.
- Primitives are typically parametric surfaces

Triangle meshes rule the world ("triangle soup")

Primitive Meshes

Composite model

- Mesh encodes topology, rough shape
- Primitive parameter encode local geometry

Triangle Meshes

Attributes

How to define a triangle?

- We need three points in \mathbb{R}^3 (obviously).
- But we can have more:

Shared Attributes in Meshes

In Triangle Meshes:

Attributes might be shared or separated:

adjacent triangles share normals

adjacent triangles have separated normals

Attributes

In general:

- Vertex attributes:
 - Position (mandatory)
 - Normals
 - Color
 - Texture Coordinates

Face attributes:

- Color
- Texture

Edge attributes (rarely used)

• E.g.: Visible line

Data Structures

Simplest: List of vertices, edges, triangles

- v₁: (posx posy posy), attrib₁, ..., attrib_{nav}.... v_{n_v}: (posx posy posy), attrib₁, ..., attrib_{nav}</sub></sub>
- e₁: (index₁ index₂), attrib₁, ..., attrib_{nae} e_{n_e} : (index₁ index₂), attrib₁, ..., attrib_{nae}

t₁: (idx₁ idx₂ idx₃), attrib₁, ..., attrib_{nat} ... t_{nt}: (idx₁ idx₂ idx₃), attrib₁, ..., attrib_{nat}

Adjacency Data Structure

Half edge data structure:

- Half edges, connected by clockwise / ccw pointers
- Pointers to opposite half edge
- Pointers to/from start vertex of each edge
- Pointers to/from left face of each edge

Implementation

```
// a half edge
struct HalfEdge {
    HalfEdge* next;
    HalfEdge* previous;
    HalfEdge* opposite;
```

```
Vertex* origin;
Face* leftFace;
EdgeData* edge;
```

};

```
// the data of the edge
// stored only once
struct EdgeData {
    HalfEdge* anEdge;
    /* attributes */
};
```

```
// a vertex
struct Vertex {
    HalfEdge* someEdge;
    /* vertex attributes */
};
// the face (triangle, poly)
struct Face {
    HalfEdge* half;
    /* face attributes */
};
```

Modeling Zoo

Particle Representations

Point-based Representations

- Set of points
- Points are (irregular) sample of the object
- Need additional information to deal with "the empty space around the particles"

Meshless Meshes...

Point Clouds

- Triangle mesh without the triangles
- Only vertices
- Attributes per point

Particle Representations

Helpful Information

- Each particle may carries a set of attributes
 - Must have: Its position
 - Additional geometry:
 Density (sample spacing), surface normals
 - Additional attributes: Color, physical quantities (mass, pressure, temperature), ...

 Addition information helps reconstructing the geometric object described by the particles

The Wrath of Khan

Why Star Trek is at fault...

- Particle methods: first used for fuzzy phenomena (fire, clouds, smoke)
- "Particle Systems—a Technique for Modeling a Class of Fuzzy Objects" [Reeves 1983]
- Movie: Genesis sequence

Geometric Modeling

3D Scanners

- 3D scanner yield point clouds
 - Have to deal with points anyway
- Algorithms that directly work on "point clouds"

Data: [IKG, University Hannover, C. Brenner]

Modeling Zoo

Implicit Modeling

General Formulation:

Curve / Surface

 $\mathbf{S} = \{\mathbf{x} | \mathbf{f}(\mathbf{x}) = 0\}$

•
$$\mathbf{x} \in \mathbb{R}^d$$
, $f(\mathbf{x}) \in \mathbb{R}$, $d = 2, 3, ...$

• S is (usually) a d - 1 dimensional object

Surface described implicitly

- Set of points where f vanishes: $f(\mathbf{x}) = 0$
- Alternative notation: $S = f^{-1}(0)$
- Aka.: "Level set method"

Implicit Modeling

Example:

• Circle:
$$x^2 + y^2 = r^2$$

 $\Leftrightarrow \underbrace{x^2 + y^2 - r^2}_{f_r(x,y)} = 0$
• Sphere: $x^2 + y^2 + z^2 = r^2$

Special Case:

- Signed distance field
 - Function value is signed distance to surface
 - Negative means inside, positive means outside
 - Circle: $f_r(x, y) = \operatorname{sign}(x^2 + y^2 r^2)\sqrt{|x^2 + y^2 r^2|}$

Implicit Modeling: Pros & Cons

Advantages:

- Topology changes easy
 - In principle...
- Standard technique for simulations with free boundaries
 - Example: fluid simulation
 - (evolving water-air interface)
- Other applications:
 - Surface reconstruction
 - "Blobby surfaces"
 - Surface analysis (local)

Implicit Modeling: Pros & Cons

Disadvantages:

- Need to solve inversion problem $S = f^{-1}(0)$
- More complex / slower algorithms
- Usually needs more memory than meshes
- Sharp features difficult

Implicit Function Types

Use depends on application:

- Signed implicit function
 - Solid modeling
 - Interior well defined

Signed distance function

- Frequently used
- Constant gradient = stable surface definition
- Distance values useful

Squared distance function

- Least-squares (Gaussian cross-section)
- Modeling of noise
- Surface extraction less stable (gradient vanishes!).

signed distance

Linear Representations

Two basic techniques

- Simple grids ("finite differences")
- Full linear ansatz ("finite elements")
 - Grids of basis functions
 - Hierarchical / adaptive grids
 - Radial basis functions / particles

Regular Grids

Discretization:

- Regular grid of values *f_{i,j}*
- Grid spacing h
- Often: Finite difference approximation

$$\frac{\partial}{\partial_{x}} f(\mathbf{x}) = \frac{1}{h} \left(f_{i(\mathbf{x}), j(\mathbf{x})} - f_{i(\mathbf{x}) - 1, j(\mathbf{x})} \right) + O(h)$$

$$\frac{\partial}{\partial_{x}} f(\mathbf{x}) = \frac{1}{2h} \left(f_{i(\mathbf{x}) + 1, j(\mathbf{x})} - f_{i(\mathbf{x}) - 1, j(\mathbf{x})} \right) + O(h^{2})$$

Regular Grids

Variant:

- Use only cells near the surface
- Saves storage & computation time

Regular Grids of Basis Functions

Discretization (2D):

Basis function in each grid cell: $b_{i,j} = b(x - i, y - j)$

Then

$$f(\mathbf{x}) = \sum_{i=1}^{d} \sum_{j=1}^{d} \lambda_{i,j} b_{i,j}(\mathbf{x})$$

Adaptive Grids

Adaptive / hierarchical grid:

- Quadtree /octree tessellation of the domain
- Refine where more precision is necessary
- Basis functions in each cell
 - Size proportional to cell size

Particle Methods

Particle methods / radial basis functions:

- Place a set of "particles" in space at positions x_i.
- Associate each with a radial basis function $b(x x_i)$.
- Linear discretization:

$$f(\mathbf{x}) = \sum_{i=1}^{d} \lambda_i b(\mathbf{x} - \mathbf{x}_i)$$

Implicit Surfaces Level Set Extraction

Algorithms

Converting: Implicit → Meshes

Standard Algorithm: Marching Cubes

Marching Cubes

Marching Cubes:

Simple idea

- Define and solve a fixed complexity, local problem.
- Compute a full solution by solving many such local problems incrementally.

Marching Cubes

Marching Cubes:

Local problem:

- Cube with 8 vertices
- Each vertex is either inside or outside the volume
 (i.e. f(x) < 0 or f(x) ≥ 0)
- How to triangulate this cube?
- How to place the vertices?

Triangulation

Triangulation:

- 256 different cases
 - Each of 8 vertices: in or out.
- By symmetry: reduction to 15 cases
 - Reflection, rotation, bit inversion
- Computes the topology of the mesh

Vertex Placement

How to place the vertices?

- Zero-th order: Vertices at edge midpoints
- First order: Linearly interpolate vertices along edges.
 - $f(\mathbf{x}) = -0.1 \text{ and } f(\mathbf{y}) = 0.2$
 - Vertex at ratio 1:2 between x and y

Outer Loop

Outer Loop:

- Start: bounding box
- Divide into cubes (regular grid)
- Execute "marching cube" in each subcube
- Output: union of all cube results
- Optional:
 - Vertex hash table to make mesh consistent
 - Removes double vertices

Marching Squares

Marching Squares:

- 2D version of the algorithm
- Same idea, fewer cases

Dynamic Processes

Time Dependent Parameters

Simple Idea

Make Parameters Functions of time t

- Point-Based: Moving points
- Meshes: Moving triangles
 - Moving spline-patch-control points
 - Moving tetraheda (volumetric "tet-meshes")
- Implicit functions $f(\mathbf{x}, t)$

Time-discretization

- "Finite-differences" → Array over time
- Temporal basis functions

Geometric Representations Summary

Classification

"Lagrangian" Discretization

- Parametric surfaces, meshes, particles
- Parametrization of the geometry
- Variables move with geometry

"Eularian" Discretization

- Bitmaps, voxels, level-set methods
- Parametrization of space
- Geometry moves through space
 - Variables remain fixed to spatial location

Summary

Summary

Different representations

- No silver bullet
- All representations work in principle for all problems
- Approximate conversion possible Implicit Models

Effort application dependent

- Conceptual effort
- Computational effort

Parametric Models

Primitive Meshes

Particle Models

Summary

Summary

Linear ansatz is our friend

$$f(\mathbf{x}) = \sum_{i=1}^{d} \lambda_{i} b_{i}(\mathbf{x})$$

- Controls shape
- Linear part easy to control